Curves on K 3 surfaces and modular forms
نویسندگان
چکیده
منابع مشابه
Modular Curves, Modular Surfaces, and Modular Fourfolds
We begin with some general remarks. Let X be a smooth projective variety of dimension n over a field k. For any positive integer p < n, it is of interest to understand, modulo a natural equivalence, the algebraic cycles Y = ∑ j mjYj lying on X, with each Yj closed and irreducible of codimension p, together with codimension p + 1 algebraic cycles Zj = ∑ i rijZij lying on Yj , for all j. There is...
متن کاملElliptic Curves and Modular Forms
This is an exposition of some of the main features of the theory of elliptic curves and modular forms.
متن کاملModular forms and K3 surfaces
For every known Hecke eigenform of weight 3 with rational eigenvalues we exhibit a K3 surface over Q associated to the form. This answers a question asked independently by Mazur and van Straten. The proof builds on a classification of CM forms by the second author.
متن کاملCounting Curves with Modular Forms
We consider the type IIA string compactified on the Calabi-Yau space given by a degree 12 hypersurface in the weighted projective space P(1,1,2,2,6). We express the prepotential of the low-energy effective supergravity theory in terms of a set of functions that transform covariantly under PSL(2,ZZ) modular transformations. These functions are then determined by monodromy properties, by singular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Topology
سال: 2010
ISSN: 1753-8416
DOI: 10.1112/jtopol/jtq030